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Abstract: We compute the momentum broadening of a heavy fundamental charge prop-

agating through a N = 4 Yang Mills plasma at large t’ Hooft coupling. We do this by

expressing the medium modification of the probe’s density matrix in terms of a Wilson

loop averaged over the plasma. We then use the AdS/CFT correspondence to evaluate this

loop, by identifying the dual semi-classical string solution. The calculation introduces the

type “1” and type “2” fields of the thermal field theory and associates the corresponding

sources with the two boundaries of the AdS space containing a black hole. The transverse

fluctuations of the endpoints of the string determine κT =
√

γλT 3π — the mean squared

momentum transfer per unit time. (γ is the Lorentz gamma factor of the quark.) The re-

sult reproduces previous results for the diffusion coefficient of a heavy quark. We compare

our results with previous AdS/CFT calculations of q̂.

Keywords: AdS-CFT Correspondence, Thermal Field Theory.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep042007039/jhep042007039.pdf

mailto:JCasalderrey-Solana@lbl.gov
mailto:dteaney@astate.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
7
)
0
3
9

Contents

1. Introduction 1

2. Transverse momentum broadening 2

3. The AdS/CFT correspondence 7

3.1 Preliminaries 7

3.2 The semi-classical string in the Kruskal plane 8

3.3 Fluctuations and world sheet black hole 10

4. Conclusions 15

1. Introduction

The suppression of high transverse momentum particles in nucleus-nucleus collisions known

as jet quenching can be used to calibrate the properties of the hot and dense matter formed

at RHIC [1, 2]. This suppression is the result of the energy loss of partons propagating

through the medium. For sufficiently high transverse momentum, radiation is expected to

be the dominant energy loss mechanism.

There are several approaches to computing the radiative energy loss [3 – 5]. Here we

will focus on the multiple soft scattering approximation, known as the BDMPS approach

after its authors [4, 5]. In this formalism, the medium induced radiation is a function of the

transport coefficient q̂ = 2κT , which is the mean squared momentum transfer per unit time

that is imparted to the gluon as it traverses the medium.1 The value of q̂ was estimated

from the suppression of high pT particles observed at RHIC, q̂ ≈ 10 − 15GeV2/fm [6, 7].

This value is surprisingly large when compared to the typical momentum scale of the

medium T ∼ 300 MeV.

The strong jet quenching and the strong elliptic flow [8 – 11] suggest that the matter is

strongly interacting. For this reason, it is useful to have a foil to weak coupling calculations

of transport in high temperature gauge theories. This foil is provided by N = 4 Super Yang

Mills (SYM) at large t’ Hooft coupling, which is tractable once the AdS/CFT conjecture

is accepted [12 – 14]. This conjecture states that N = 4 SYM is dual to Type II B string

theory in an AdS5 ×S5 background. The correspondence is particularly attractive because

real time correlators in the strong coupling limit of the gauge theory can be determined by

solving classical super gravity equations of motion.

1The more common definition is the mean squared momentum transfer per unit length rather than time.

The two definitions coincide in the ultra-relativistic limit.
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In the field of heavy ion phenomenology, interest in the AdS/CFT correspondence

began when Policastro, Son and Starinets determined the shear viscosity (η) to entropy

(s) ratio of the N = 4 SYM plasma [15]

η

s
=

1

4π
. (1.1)

This ratio says that the mean free path is a fraction of the inverse temperature, `mfp ∼
1/(4πT ). Since an η/s ratio of this order is necessary to have hydrodynamics at RHIC, the

computation in N = 4 SYM was important, because it showed that η/s can be this small,

at least in some specific theories.

Since then there has been a lot of activity in this field. The drag coefficient of a

heavy quark was computed in refs. [16, 17] and agrees with the diffusion coefficient found

in ref. [18]. The drag also has been computed in different backgrounds [19 – 21, 23, 24].

The properties of bound states of heavy quarks was studied in refs. [25 – 30], and the fields

associated with the jet’s passage were studied in refs. [31, 32]. In addition, the conjecture

has been used to describe the initial collision [33, 34], and the subsequent hydrodynamic

evolution [35 – 37].

In refs. [44, 45], the “jet-quenching parameter” was computed by taking the dipole

formula [38] as a non-perturbative definition of q̂ [4]. The computation proceeds by eval-

uating a light like Wilson loop running along the lightcone. This computation has been

extended in different ways by several authors [39 – 42].

In this paper we will define κT as the mean squared transverse momentum transfer to a

heavy quark propagating through the medium [43]. Along the lines of ref. [18], we compute

the medium modifications of the heavy quark density matrix, which in turn is related to

the momentum broadening.2 The (1,2) structure of the density matrix is identified with

the two boundaries of the Kruskal plane of the AdS black hole. The computation proceeds

by fluctuating an appropriately defined Wilson line. A careful analysis of the fluctuations

leads to

κT =
√

γλT 3π , (1.2)

which diverges in the ultrarelativistic limit. This value is different from that of refs. [44, 45],

which is numerically close to the zero velocity limit of this expression. An analysis of the

approximations underlying the dipole formula used in these works, and the relationship of

q̂ to the squared momentum transfer, may shed light on the discrepancy, and clarify the

dynamics of the strongly coupled medium.

2. Transverse momentum broadening

We will for simplicity consider a scalar heavy “quark” coupled to gauge fields. The heavy

quark is described by the heavy quark effective Lagrangian

L = LYM + Q† (iu · D − M) Q . (2.1)

2The momentum broadening can be expressed as a Wilson loop which is similar to that of refs. [44, 45],

but with the Wilson lines approaching the lightcone from below.
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Here we follow the conventions, uµ = (γ, γv), vµ = (1,v), Dµ = ∂µ + iAµ, and the link

from the origin to dX is U(dX, 0) = e−idXµAµ

Following the formulation of QCD kinetic theory [46, 47], we define the Wigner distri-

bution

fcd(X, r⊥) = Uca(X,X + r⊥/2) Qa(X + r⊥/2)ρQ†
b(X − r⊥/2) Ubd(X − r⊥/2,X) , (2.2)

where X denotes the four vector, X = (t,x), r⊥ is a transverse displacement, and X + r⊥
denotes (with a small abuse of notation) the space time point, (t,x⊥ + r⊥, z). Then the

color indices are traced and the Wigner function is averaged with the density matrix of the

gauge + quark ensemble

f(X, r⊥) ≡ 〈fcc(X, r⊥)〉 = Tr
[

ρ Q†
a(X − r⊥/2)UabQb(X + r⊥/2)

]

, (2.3)

with Uab the straight link Uab(X − r⊥/2,X + r⊥/2) .

To motivate this definition and subsequent developments, we note that in kinetic theory

the Fourier transform of this object is identified with the phase space distribution

f(X,k⊥) =

∫

d2r⊥ e−ik⊥·r⊥ f(X, r⊥) . (2.4)

In this way the transverse current is

∫
d2k⊥
(2π)2

k⊥f(X,k⊥) = −i
∂

∂r⊥
f(X, r⊥)

= Tr

[

ρ

{

Q†
(

− i

2
D⊥Q

)

+

(

− i

2
D⊥Q

)†
Q

}]

. (2.5)

With this introduction, we will identify the mean transverse momentum squared with

〈
p2
⊥(t)

〉
=

∫

d3x

∫
d2k⊥
(2π)2

k2
⊥f(X,k⊥) , (2.6)

=

∫

d3x −∇2
r⊥

f(X, r⊥)
∣
∣
r⊥=0

. (2.7)

If the heavy particle starts with a narrow transverse momentum distribution, then

after a long time T we expect that the average squared transverse momentum is

〈
p2
⊥(T )

〉
= 2κT T , (2.8)

where the factor of two accounts for the two transverse directions, and κT is the momentum

diffusion coefficient.

We next study the time evolution of the Wigner function. A complete set of states

with one heavy quark may be written with the short hand notation

∑

A1

∫

1
Q†(1) |A1〉〈A1|Q(1) ≡

∑

Aµ,a1

∫

d3x1 Q†
a1

(x1) |Aµ〉〈Aµ|Qa1(x1) , (2.9)
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where A1 labels the Eigenstates of the gauge fixed operator Aµ(x) (see ref. [48] for a

convincing discussion of constraints). Then, working in the Schrödinger picture, we first

evaluate the density matrix

Tr[ρ(t)] = Tr
[

e−iH(t−to) ρ(to) e+iH(t−to)
]

, (2.10)

were ρ(to) is the density matrix at time to. Inserting complete sets of states we obtain

Tr[ρ(t)] =
∑

A0A1A2

∫

0,1,2
〈A0|Q(0) e−iH(t−to) Q†(1) |A1〉

×〈A1|Q(1)ρ(to)Q
†(2) |A2〉

×〈A2|Q(2)e+iH(t−to)Q†(0) |A0〉 . (2.11)

Putting the first term at the end, we rewrite this as the path integral

∫

x1x2

∫

[DAµ][DQDQ†] ρo
a1a2

[x1,x2, A1, A2] e
i

R

C
d4xc LYM+Q†(iu·D−M)Q

Qa2(x2, to − iε) Q†
a1(x1, to) , (2.12)

with

ρo
a1a2

[x1,x2, A1, A2] = 〈A1|Qa1(x1)ρ(to)Q
†
a2

(x2) |A2〉 . (2.13)

Here the path integral is performed along the closed time path, starting from to, running

up to time t, and returning back to to − iε.

The energetic quark may be integrated out of this expression for the density matrix.

The contour Green Function of the heavy quark field in a fixed gauge background is written

iG(2, 1) =
〈

TC Qa2(x2t2C)Q†
a1

(x1t1C)
〉

, (2.14)

where ai denote color indices, tiC is the contour time, and TC denotes the contour ordered

product. This Green function satisfies

(iu · D − M) iG(2, 1) = iδa2a1δ
3(x2 − x1)δC(t2C − t1C) , (2.15)

which has solution

iG(2, 1) = e+iMu·(X2−X1)

∫

C

dtC

γ
θ(tC − t1C) δ4

C(X2 − XX1
(tC))

×
[

P exp

(

−i

∫ tC

t1C

dt′C vµAµ(XX1
(t′C))

)]

a2a1

, (2.16)

where Xµ
X1

(tC) = Xµ
1 + vµ(tC − t1C) is the heavy quark world line which passes through

X1. Then integrating the quark fields we have

Tr[ρ(t)] =

∫

xo

∫

[DAµ] ei
R

C
d4xc LYM det (iu · D − M) ρo

a1a2
[xo,xo, A1, A2]WC [0]a1a2 ,

(2.17)
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∆
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C
X  = (t  − i    , x  − i   

0f
ε ε

0

X  = (t  , x )

Figure 1: The contour world line of the heavy quark with velocity v in the z direction. The world

line of the quark passing through Xo may be parametrized as Xµ
Xo

(tC) = Xµ
o + vµ(tC − to C), with

vµ = (1,v). The Wilson line WC [0] follows the world line of the quark. The circles at tC and t′
C

indicate the insertions of the field strengths F yµvµ(tC) and F yνvν(t′
C
) into the Wilson line as in

eq. (2.25) .

where

WC [0] = TC exp

(

−i

∫

C
dtC vµAµ (XXo(tC))

)

. (2.18)

The path of the Wilson line runs along the world line of the heavy quark and returns on

the time reversed path as shown in figure 1 .

We make three comments: (i) Up to terms suppressed by powers of T/M the deter-

minant may be dropped in this expression. This determinant is responsible for effective

vertices which appear in the light quark Lagrangian when the heavy quark is integrated

out [49]. (ii) Due to the overall translational invariance of the problem, the average is

independent of xo, and yields an overall factor of volume. (iii) We will denote the contour

path integral over the gauge fields in eq. (2.17) as 〈. . .〉A, with the initial and final values

of the gauge fields given by A1 and A2 respectively. A1 and A2 are integrated over with

weights given by the initial density matrix. Thus eq. (2.17) becomes

Tr[ρ(t)] = V 〈tr ρo[xo,xo, A1, A2] WC [0]〉A , (2.19)

where the trace is over the color indices.

Next we consider the evolution of f(X, r⊥)

f(X, r⊥) = Tr
[

e−iH(t−to) ρ(to) e+iH(t−to) Q†
a(X − r⊥/2)UabQb(X + r⊥/2)

]

. (2.20)

Inserting complete set of states as before we obtain

f(X, r⊥) =
∑

A0A1A2A3

∫

0,1,2
〈A0|Q(0) e−iH(t−to) Q†(1) |A1〉

×〈A1|Q(1)ρ(to)Q
†(2) |A2〉

×〈A2|Q(2)e+iH(t−to) Q†
a(X − r⊥/2)Uab |A3〉

×〈A3|Qb(X + r⊥/2)Q†(0) |A0〉 . (2.21)

Putting the first term at the end, we rewrite this as the path integral
∫

x1x2

∫

[DAµ][DQDQ†] ρo
a1a2

[x1,x2, A1, A2] e
i

R

C
d4xc LYM+Q†(iu·D−M)Q (2.22)

×Qa2(x2, to − iε) Q†
a(X − r⊥/2)UabQb(X + r⊥/2) Q†

a1
(x1, to) .
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0

x r z
0i εt

0
i ε , − /2 ,t( + v∆ t )− /2 , −− ,( )

ρ

t

Figure 2: Graphical representation of eq. (2.23). The Wilson line indicated by the black line is

denoted WC [r⊥/2,−r⊥/2]. This Wilson line is traced with the initial density matrix, ρo
a1a2

.

Performing the quark integration, we have

f(X, r⊥) =
〈
tr ρo[xo + r⊥/2,xo − r⊥/2, A1, A2]WC [r⊥/2,−r⊥/2]

〉

A
, (2.23)

where the Wilson line WC [r⊥/2,−r⊥/2] is shown by the black lines in figure 2. We may

expand this for small r⊥ by inserting unity U(Xo +r⊥/2,Xo)U(Xo,Xo +r⊥/2) and U(Xo−
r⊥/2,Xo)U(Xo,Xo−r⊥/2) at the beginning and ends of the contour and using the definition

of fab. We have

f(X, r⊥) = f(X, 0) +
r2
⊥
2

〈
∂2

∂r2
⊥

fab(Xo, r⊥)WC [0]ab

〉

A

+ momentum broadening , (2.24)

with the momentum broadening given by

1

2

(r⊥
2

)2
∫

C

∫

C

dtCdt′C

〈

trρo[xo,xo, A1, A2] TC

[
F yµ(tC)vµF yν(t′C)vν WC [0]

]
〉

A

. (2.25)

We again make three comments: (i) The second term is in eq. (2.24) is characteristic of the

initial momentum distribution of the quark which may be supposed small; the momentum

broadening is described by the third term. (ii) We have tacitly assumed that Tr[ρ(t)] was

unity, we will divide by eq. (2.19) to set the normalization. (iii) The TC ordered product of

field strengths means that we insert field operators into the Wilson line WC [0] as shown in

figure 1. As in ref. [18], we define the contour Wilson line WC [δy], with deformations in the

y direction at various points along the contour, δy(tC). Then, the contour ordered product

of field strengths can be written as the variation of WC[δy] at times tC and t′C respectively.

The shape of the Wilson line is the source for the contour ordered product of fields.

Thus from eq. (2.7), eq. (2.8), and eq. (2.25), the momentum broadening is

κT T =
1

4

1

〈trρoWC [0]〉A

∫

C

∫

C
dtCdt′C

〈

tr ρo[xo,xo, A1, A2]
δ2WC [δy]

δy(tC) δy(t′C)

〉

A

, (2.26)

where T is the total real time of the process.
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Now we break up the contour integration into type “1” and type “2” fields; we write

δy1(t) and δy2(t
′) for variations on the one and two branches and use t, t′ for the real part

of tC, t′C . Then the contour correlations are

iG11(t, t
′) =

1

〈trρoWC [0, 0]〉A

〈

tr ρo δ2WC [δy1, 0]

δy1(t) δy1(t′)

〉

A

, (2.27)

iG22(t, t
′) =

1

〈trρoWC [0, 0]〉A

〈

tr ρo δ2WC [0, δy2]

δy1(t) δy2(t′)

〉

A

, (2.28)

iG12(t, t
′) =

1

〈trρoWC [0, 0]〉A

〈

tr ρo δ2WC [δy1, δy2]

δy1(t) δy2(t′)

〉

A

, (2.29)

iG21(t, t
′) =

1

〈trρoWC [0, 0]〉A

〈

tr ρo δ2WC [δy2, δy2]

δy1(t′) δy2(t)

〉

A

. (2.30)

Finally, we may use approximate translational invariance to write

κT = lim
ω→0

1

4

∫

dte+iωt (iG11(t, 0) + iG22(t, 0) + iG12(t, 0) + iG21(t, 0)) . (2.31)

3. The AdS/CFT correspondence

In the previous section we have identified the source for the contour ordered electric fields

as the variation of the trajectory of a Wilson line running along the contour shown in

figure 1. The strategy to extract the transverse momentum diffusion coefficient κT parallels

ref. [18] closely. We first construct a semi-classical string which is the gravity dual of the

unperturbed Wilson line running along the Schwinger-Keyldish contour. Then we vary the

endpoint of the string in order to obtain the appropriate contour correlation functions of

electric fields or κT .

3.1 Preliminaries

First we recall previous work by us and others to establish notation [50, 16 – 18]

• The metric GMN which corresponds to N = 4 Super Yang Mills at finite temperature

is the AdS space with a black hole

ds2 =
r2

R2

[

−f(r)dt2 + dx2
‖

]

+
R2

f(r)r2
dr2 + R2dΩ2

5 , (3.1)

where f(r) = 1 −
(

ro

r

)4
, R is the AdS radius, and ro is related to the Hawking

temperature πTR2 = r0. We define the scaled units, πT t = t̄, πTx = x̄ and r̄ = r/ro,

and define z̄ = 1/r̄ , so that the metric reads

ds2

R2
= − 1

z̄2
f(z̄) dt̄2 +

1

z̄2
dx̄2

‖ +
dz̄2

f(z̄) z̄2
+ dΩ2

5 , (3.2)

and we distinguish the function f by its argument, f(z̄) = 1 − z̄4 . Further, we will

sometimes change variables to u = z̄2. In what follows we will drop the “bar”.

– 7 –
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• The gravity dual of a Wilson line moving along the unperturbed trajectory x3 = vt

is a semi-classical string stretching in AdS5 × S5 whose endpoint follows the curve

x3 = vt. The dynamics of the semi-classical string is described by the Nambu-Goto

action

SNG =
1

2πα′

∫

dτdσ
√

−dethab , (3.3)

where

hab = GMN∂aX
M∂bX

N . (3.4)

The solution to the classical equations of motion is described by the map

(τ, σ) 7→ (t = τ,x⊥ = 0, x3(τ, σ), z = σ, Ω5 = Const) ,

with

x3(t, z) = vt +
v

2
[arctan(z) − arctanh(z)] (3.5)

3.2 The semi-classical string in the Kruskal plane

The semi-classical string solution given in eq. (3.5) is dual to a quark moving with velocity

v. In the gauge theory this quark is constructed by turning on a U(1) electric field and

allowing the distribution to come to stationary state [16]. Far in the past the heavy quark

is nearly at rest, and the world sheet covers the full Kruskal plane [18]3. This is shown in

figure 3 which also illustrates the Kruskal coordinates. As the electric field is turned on

in the gauge theory, the quark accelerates and slowly approaches the stationary velocity

distribution. In the gravity dual this corresponds to slowly turning on a U(1) electric field

in the boundary brane and waiting for the string to reach the asymptotic form given by

eq. (3.5). We re-write this solution in Kruskal coordinates as

x3 =
v

2
log(V ) + v arctan(z) for V > 0 . (3.9)

Examining this solution we see a logarithmic divergence for V → 0, i.e. in the distant

past, t → −∞. This discontinuity in the distant past reflects the fact that the asymptotic

solution eq. (3.9) is not a solution as the electric field was turned on slowly. At t → −∞
it is reasonable expect that this solution slowly deforms into the static solution described

above and covers the full Kruskal plane.

3Our Kruskal conventions are the following. We first define

z∗(z) ≡

Z z

0

dz

f(z)
=

1

2
tan−1(z) +

1

2
tanh−1(z) (3.6)

Then we define the coordinates (ν+, ν−)

ν+ ≡ t + z∗(z) ν− ≡ t − z∗(z) (3.7)

so that for instance ν− = Const is the geodesic of an in-falling lightlike particle. Finally the Kruskal

coordinates are

U = −e−2ν+ V = e+2ν
− (3.8)

We also define V ′ = V e2 tan−1(z) and X ′ = −UV e2 tan−1(z).

– 8 –
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Figure 3: Kruskal diagram for the AdS black hole. The coordinates (t, r) span the right quadrant.

The thick hyperbolas on the sides of the two quadrants are the boundaries at r = ∞. The boundary

in the right and left quadrants correspond to the “1” and “2” axes of the thermal field theory

respectively. The static quark corresponds to a string which spans the full Kruskal plane. At finite

velocity, the asymptotic solution eq. (3.5) is discontinuous at t = −∞ or V = 0.

Therefore, we will demand analyticity across the V = 0 line while extending V through

the lower half plane to negative real argument.4 Through this process x3 becomes imaginary

x3 =
v

2
log(|V |) + v arctan(z) − iv π/2

︸︷︷︸

β/2

. (3.10)

This imaginary value for the coordinate x3 is appropriate. The left quadrant of the Kruskal

plane is associated with the “2” branch of the field theory with σ = iβ/2, or iπ/2 for our

rescaled units. Since the operators on the real axis are evaluated at the space time point

(t, x3) = (t, vt), when time is extended in the imaginary time direction we expect that the

operators should be evaluated at

(t, vt) → (t − iβ/2, vt − ivβ/2) . (3.11)

Thus the analytic extension of the string solution into the lower half V plane maps to the

appropriate x3 coordinate.

In what follows we will take this string solution as the gravity dual of the heavy quark

(or Wilson line) propagating along the Schwinger-Keyldish contour shown in figure 1 with

the second axis displaced by iβ/2. We will make the correspondence between the “1” and

“2” axes of the contour and the endpoints of the string on the right and left boundaries

4This choice of extending V through the lower half plane is compatible with the construction of Son and

Herzog for the real time path integral which we adopt later.
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of AdS. When studying fluctuations of this semi-classical string solution, we will bear in

mind this discussion of the past infinity and demand analyticity across the V = 0 line.

3.3 Fluctuations and world sheet black hole

Having constructed the string solution corresponding to a heavy quark propagating along

the Schwinger Keldysh contour, we will proceed to fluctuate the shape of the string solutions

in the transverse directions and solve for the fluctuations. Once the classical solution

is determined in the Kruskal plane we follow the general philosophy of the AdS/CFT

correspondence and equate the classical action of the source to the generating functional

1

eiSNG[0,0]
eiSNG[δy1,δy2] =

1

〈tr ρo W [0, 0]〉A
〈tr ρo W [δy1, δy2]〉A . (3.12)

However in order to find the classical solution, boundary conditions are needed. The

appropriate boundary conditions for G11 and G22 etc. are not obvious.

The appropriate boundary conditions are greatly clarified by a change of coordinates

which transforms the original induced metric to a diagonal metric which turns out to be

equivalent to a world sheet black hole. Using the original coordinates (τ, σ) = (t, z) the

induced metric is

htt = −R2

z2

(
1

γ2
− z4

)

, (3.13)

hzz =
R2

z2

1

f2

(

1 − z4

γ2

)

, (3.14)

htz = −R2

z2

1

f
v2z2 . (3.15)

This non-diagonal world sheet metric can be diagonalized by the following change of coor-

dinates

t̂ =
1√
γ

(

t +
1

2
arctan(z) − 1

2

√
γ arctan(

√
γz)

−1

2
arctanh(z) +

1

2

√
γartanh(

√
γz)

)

, (3.16)

ẑ =
√

γz . (3.17)

and the metric takes the form

ht̂t̂ = −R2

ẑ2
f(ẑ) , (3.18)

hẑẑ =
R2

ẑ2

1

f(ẑ)
, (3.19)

ht̂ẑ = 0 , (3.20)

with f(ẑ) = 1− ẑ4. Thus the world sheet metric is in fact a black hole with the horizon at

z2 = 1/γ or ẑ = 1.5 As usual, the horizon is a coordinate singularity and is a consequence

5This fact has been already noted in [51]
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Figure 4: (a) The world sheet black hole. (b) The Schwarzschild black hole in space time. The

future event horizon of the world sheet and its corresponding image z = 1/
√

γ are indicated by the

solid red line. Similarly the solid blue line maps to the future event horizon of the space time black

hole. The shaded region of the world sheet black hole maps into the shaded region of space-time

region of the Schwarzschild geometry. Similarly there is a separate string solution in the V < 0

half of the (U, V ) plane which maps to the V̂ < 0 half of the (Û , V̂ ) plane. The two solutions are

joined at past infinity (V = 0) by demanding analyticity in the lower complex V plane, i.e. that

only positive energy solutions emerge from past infinity.

of the coordinate transformation in eq. (3.16). In this coordinate system, the induced

metric for the moving string with “hat” variables equals the induced metric of the static

string with “un-hatted” variables.

Next we show how different regions of the world-sheet black hole map into space time.

First we define the analogs of Kruskal variables for hatted variables ν̂−, ν̂+, V̂ , Û , ẑ∗, . . . .
(For instance ẑ∗ = (tan− 1(ẑ) + tanh− 1(ẑ))/2 ). Taking V̂ positive, we have the following

relation between the world-sheet and space-time Kruskal variables6

ẑ =
√

γz , (3.21)

V̂ ′ =
(
V ′)1/

√
γ

, (3.22)

X̂ ′ =
1 − ẑ

1 + ẑ
X ′ =

1 − z

1 + z
. (3.23)

From the form of this map we see the upper half of the world sheet Kruskal plane (Û , V̂ )

gets mapped into the upper half Kruskal plane of space-time V > 0. The structure is

illustrated in figure 4. As V becomes negative V̂ becomes imaginary. This is because the

solution given in eq. (3.5) is not valid at past infinity. In the lower half (V < 0) of the

Kruskal plane we can find a separate string solution which maps the lower half (V̂ < 0)

of the world sheet Kruskal plane. At past infinity, before the electric field was turned on,

6As noted before, we define V ′ = V e2 tan−1(z) and X ′ = −UV e2 tan−1(z) and analogous relations for V̂ ′

and X̂ ′
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the quark is at rest, and the two string solution are joined. We will therefore connect the

solutions in the upper half and lower half Kruskal planes by demanding analyticity across

the V = 0 line, extending V through the lower half complex V plane. This extension

through the lower complex V plane is consistent with the Herzog-Son construction [52]

and physically says that only positive energy solutions emerge from past infinity. Again

by analogy with the Herzog-Son construction, we will extend through the upper complex

Û plane. Physically this says that only negative energy solutions emerge from the future

event horizon of the world sheet black hole.

Having clarified the analytic structure of the world sheet black hole and determined

the appropriate boundary conditions, we next analyze small fluctuations. The equation of

motion for small transverse fluctuations can be found easily in “hatted” coordinate system.

Introducing

ŷ =
√

γy , (3.24)

the action for small fluctuation is the same as for the static string [18]

SNG =
R2

2πα′

∫
dt̂ dû

2û3/2

[

1 − 1

2

(
˙̂y2

f(û)
− 4f(û)û

(
ŷ′

)2

)]

. (3.25)

We define,

ŷ(t̂, û) =

∫

e−iω̂t̂ ŷ(ω̂) Ŷ (ω̂, û)
dω̂

2π
. (3.26)

where we choose to normalize Ŷω̂(û = 0) = 1, i.e. ŷ(ω) is the value of the fluctuation at the

boundary.

The Euler-Lagrange equation for the small string fluctuations are

∂2
ûŶω̂ − (2 + 6û2)

4ûf
∂ûŶω̂ +

ω̂2

4ûf2
Ŷω̂ = 0 . (3.27)

This equation is solved by

Ŷ (ω̂, u) = (1 − û)−iω̂/4 F̂ (ω̂, û) (3.28)

where F̂ (û) is a regular function of û > 0 . (1 − û)−iω̂/4 is in-falling in the world-sheet

horizon û = 1. The complex conjugate of this expression is also a solution of the differential

equation and is outgoing at the horizon.

Let us now extend these solutions into the full Kruskal plane. It is useful to express

the solution in terms of the world sheet Kruskal coordinates. Close to ẑ = 1 the in-falling

solution and out-going solutions behave as

e−iω̂t̂Ŷ (ω̂, û) ∼ e−iω̂/2 ln(V̂ ) in-falling (3.29)

e−iω̂t̂Ŷ ∗(ω̂, û) ∼ eiω̂/2 ln(−Û) out-going (3.30)

As mentioned before, the coordinate V̂ does not cross zero in this z =
√

u = 1/
√

γ.

However, Û does and we should be careful when defining the branch cut for the logarithm.
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In analogy with the Herzog-Son prescription, we will impose that the solution should be

analytic in the upper half of the complex Û plane. Since Û is negative in this quadrant,

the prescription means that

e−iω̂t̂Ŷ ∗(ω̂, û) ∼ eπω̂/2eiω̂/2 ln(Û) . (3.31)

Thus, when the fluctuation crosses the world-sheet event horizon in the right quadrant

it picks a factor exp{πω̂/2}. Due to the different relation between Û and the local (t̂, ẑ)

coordinates, in the left quadrant the solution behaves as

e−iω̂t̂Ŷ ∗(ω̂, û) ∼ eiω̂/2 ln(Û) . (3.32)

Thus, after passing the world sheet horizon, keeping the same analyticity properties in Û ,

the solution picks a factor exp{−πω̂/2} in the L-quadrant.

We now address how the matching of left and right quadrant is performed. Using the

change of coordinates eq. (3.16) we obtain (for û < 1)

e−iω̂t̂Ŷ (ω̂, û) = e−iωt(1 − u)−iω/4Fi(ω, u) , (3.33)

e−iω̂t̂Ŷ ∗(ω̂, û) = e−iωt(
1

γ
− u)iω̂/2(1 − u)−iω/4Fo(ω, u) , (3.34)

where we have defined ω = ω̂/
√

γ and Fi(ω, u), Fo(ω, u) are two regular solutions in u.

The pole at u = 1/
√

γ in the outgoing solution is a consequence of crossing the Û = 0 line.

Note that this pole does not appear in the in-falling solution, since we do not cross the

V̂ = 0 line. From this point of view, the previous prescription for the analytic properties of

the solution in the Û coordinate translates into the prescription for going around the pole

in u = 1/
√

γ. Taking this prescription into account, in the R quadrant the two solutions

close to the horizon behave as

e−iω̂t̂Ŷ (ω̂, û) ∼ e−iω/2 ln(V ) , (3.35)

e−iω̂t̂Ŷ ∗(ω̂, û) ∼ eπω̂/2e−iω/2 ln(V ) . (3.36)

Note that from the point of view of the AdS black-hole both solutions are in-falling. The

exponential factor in the outgoing solution is a consequence of the prescription to cross the

pole at û = 1. In the same way, the fluctuations in the L-quadrant behave as

e−iω̂t̂Ŷ (ω̂, û) ∼ e−iω/2 ln(−V ) , (3.37)

e−iω̂t̂Ŷ ∗(ω̂, û) ∼ e−πω̂/2e−iω/2 ln(−V ) . (3.38)

With these four expression we find four different solutions defined in both quadrants

of the (AdS) Kruskal plane

ŷR,i =

{

e−iω̂t̂Ŷ (ω̂, û) in R

0 in L
ŷL,i =

{

0 in R

e−iω̂t̂Ŷ (ω̂, û) in L
, (3.39)

ŷR,o =

{

e−iω̂t̂Ŷ ∗(ω̂, û) in R

0 in L
ŷL,o =

{

0 in R

e−iω̂t̂Ŷ ∗(ω̂, û) in L
. (3.40)
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Following the Herzog-Son prescription [52], we look for linear combinations of these

expressions that, close to the horizon, are analytic in the lower half of the complex V plane.

With this criterium only two linear combinations can be found:

ŷo = ŷR,o + αoŷL,o , (3.41)

ŷi = ŷR,i + αiûL,i . (3.42)

From the close to horizon behaviors of the solutions eq. (3.35), eq. (3.36), eq. (3.37),

eq. (3.38), the analyticity properties demand

αo = e+πω̂e−πω/2 , (3.43)

αi = e−πω/2 . (3.44)

These two solutions are used as a basis for the linearized string fluctuations defined

over the full (AdS) Kruskal plane

ŷ =

∫
dω̂

2π
(a(ω)ŷo(ω) + b(ω)ŷi(ω)) . (3.45)

This prescription recovers the results of Herzog and Son [52] when γ = 1. To see this

one has to realize that when γ = 1, since these solutions are only defined for u < 1 we do

not cross the pole and, thus, the exponential prefactors in ŷ{L,R}o do not appear.

The coefficients a(ω̂), b(ω̂) can be determined by the boundary values of the solutions.

Thus, if we have7

ŷ(t̂, û = 0)
∣
∣
R

=

∫
dω̂

2π
e−iω̂t̂ŷ1(ω̂) , (3.46)

ŷ(t̂, û = 0)
∣
∣
L

=

∫
dω̂

2π
e−iω̂t̂ŷ2(ω̂) , (3.47)

we obtain

a(ω) =
1

eπω̂ − 1

(

−ŷ1(ω̂) + ŷ2(ω̂)eπω/2
)

, (3.48)

b(ω) =
1

eπω̂ − 1

(

eπω̂ ŷ1(ω̂) − eπω/2ŷ2(ω̂)
)

. (3.49)

We can now compute the boundary action in terms of the string solutions. In (t̂, û)

coordinates

SB =
R2

2πα

[∫

R

dω̂

2π

1

û1/2
ŷ(−ω̂, û)∂ûŷ(ω̂, û) −

∫

L

dω̂

2π

1

û1/2
ŷ(−ω̂, û)∂ûŷ(ω̂, û)

]

. (3.50)

7Note that at û = 0, t̂ = t/
√

γ. Thus y(t, u = 0) =
R

dω
2π

e−iω̂t̂ŷ(ω̂), i. e. ŷ(ω̂) = y(ω)
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Using eq. 3.48 this action can be expressed as8

SB =
R2

2πα

√
γ

∫
dω

2π

[

(3.51)

y1(−ω)y1(ω)

(

(n̂ + 1)
1

û1/2
Ŷ ∗(−ω̂, û)∂ûŶ (ω̂, û) − n̂

1

û1/2
Ŷ (−ω̂, û)∂ûŶ ∗(ω̂, û)

)

+y1(−ω)y2(ω)eπω/2n̂

(

− 1

û1/2
Ŷ ∗(−ω̂, û)∂ûŶ (ω̂, û) +

1

û1/2
Ŷ (−ω̂, û)∂ûŶ ∗(ω̂, û)

)

+y2(−ω)y1(ω)
1 + n̂

eπω/2

(

− 1

û1/2
Ŷ ∗(−ω̂, û)∂ûŶ (ω̂, û) +

1

û1/2
Ŷ (−ω̂, û)∂ûŶ ∗(ω̂, û)

)

+y2(−ω)y2(ω)

(

n̂
1

û1/2
Ŷ ∗(−ω̂, û)∂ûŶ (ω̂, û) − (n̂ + 1)

1

û1/2
Ŷ (−ω̂, û)∂ûŶ ∗(ω̂, û)

)]

,

where n̂ = 1/(exp{πω̂} − 1) and we have used the fact that ŷ1,2(ω̂) = y1,2(ω). From this

expression we can read off immediately the different correlators by taking derivatives with

respect to the boundary values. In particular

lim
ω−→0

iG12(ω) = lim
ω−→0

iG21(ω) = lim
ω−→0

1

2
(iG11(ω) + iG22(ω)) ,

= lim
ω−→0

R2

πα

2

πω̂

√
γ Im

{
1

û1/2
Ŷ ∗(−ω̂, û)∂ûŶ (ω̂, û)

}

(3.52)

Since the action for the fluctuation eq. (3.25) is formally the same as that of the static

string, we obtain the same result for the transverse momentum transferred as in the static

case (up to an overall factor of
√

γ). After restoring physical units and using the result

of [18] and eq. (2.31)

κT =
√

γλT 3π . (3.53)

4. Conclusions

In this paper we have studied the medium modifications of a heavy quark that propagates

in a strongly coupled plasma at finite velocity v. Starting from the density matrix of the

quark, we have expressed the transverse momentum broadening of the probe as a Wilson

loop running along the x = v t line, with a transverse separation, ∆x. This Wilson loop

is similar to that considered in refs. [45, 44] but approaches the lightcone from below.

The second derivative of this Wilson loop with respect to the transverse separation ∆x

yields κT — the mean squared transverse momentum transfer per unit time acquired by

the probe in its propagation through the medium. We have stressed that the appropriate

Wilson loop has a time ordered line and an anti-time ordered line. These two pieces can

be understood as the quark’s amplitude and complex conjugate amplitude respectively.

Due to this specific time ordering, we have introduced the type “1” and type “2” fields of

the Schwinger-Keyldish formalism [53, 54]. The sources for these type “1” and type “2”

8This expression looks slightly different that eq. (28) of [52] because in that work fk(u) is defined as

outgoing, while here Ŷ (ω̂, û) is infalling. This notation is chosen to connect with our previous work [18].
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fields correspond to the boundary values of SUGRA fields in right and left quadrants of

the Kruskal plane.

To construct the gravity dual of this (“1”,“2”) Wilson loop we have extended the

moving quark string solution found in refs. [16, 17] to the left Kruskal quadrant. The string

world sheet is disconnected along the V = 0 line because the V = 0 line represents the

distant past. In the distant past the moving quark string is not a solution to the equations

of motion because the electric field used to accelerate the quark is being slowly turned on.

At past infinity the two disconnected solutions are joined by demanding analyticity in the

lower half plane V as required by the correspondence between AdS black holes and the real

time thermal field theory.

Subsequently we have computed κT by fluctuating the transverse position of the string

endpoint and solving for the standing waves. To determine the correct boundary conditions,

we first noticed that the induced metric of the string worldsheet is that of a black hole. The

event horizon of this world sheet black hole maps to the line r = ro
√

γ, with ro the event

horizon of the AdS black hole. Then, borrowing from the work of Herzog and Son [52],

we have analytically continued the fluctuations through both the world-sheet and AdS

horizons. This analytic extension amounts to specifying the boundary conditions on the

physically correct solutions in the full Kruskal plane. From the solution in the full Kruskal

plane we obtain

κT =
√

γλT 3π , (4.1)

which diverges in the v → 1 limit.

Finally we wish to compare κT (the mean squared transverse momentum transfer to

a heavy quark per unit time) to q̂. Up to a factor of two, the definition of κT given

here is often ascribed to q̂, at least if the qualifier “heavy” is removed from heavy quark.9

However, the value 2κT differs from the value of the jet quenching parameter found by Liu,

Rajagopal and Wiedemann (LRW) [45, 44]

q̂LRW =
π3/2Γ(3

4)

2Γ(5
4)

√
λT 3 . (4.2)

LRW use the dipole formula as a definition of q̂ and compute a strictly lightlike Wilson loop.

This Wilson loop corresponds into a space-like surface. In this computation special care

has to be taken in approaching the limits M → ∞ and v → 1. Regardless of the concern

expressed by some authors about this computation [16, 27, 55] (most of which have been

addressed in [45]), we do not completely understand the source of this discrepancy. The

difference between the two results may lie in the fact that the Wilson line in ref. [45, 44] is

strictly light like.

9There is a trivial factor of 2 difference stemming from the number of spatial dimensions, κT → q̂

2
.

Further q̂ is often expressed in the adjoint representation, so that q̂A = 2q̂F . We will restrict our analysis

to the fundamental representation and the value of q̂ quoted below differs from the adjoint q̂ in eq. (15) of

ref. [44] by an appropriate factor of two.
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Certainly the calculation described here is limited to the regime10

γ <

(
M√
λT

)2

. (4.3)

To see this we recall that the quark moving with velocity v was constructed by slowly

turning on an electric field and accelerating the quark to its terminal velocity [16]. The

equation of motion of the quark is

dp

dt
= −ηp + E , (4.4)

with η ∼
√

λT 2/M . The electric field can be increased until its critical value, which can

be computed from the Born-Infeld action for the probe brane in the AdS geometry,11

SBI ∼
√

1 −
(

2πα′E
R2

r2

)2

. (4.5)

The critical value for the electric field is then

E <
M2

√
λ

. (4.6)

Equating E ∼ ηp we obtain the bound written above, eq. (4.3). Nevertheless by taking the

mass to infinity we may approach the lightlike Wilson line from below.

In summary, the discrepancy may have its origin in the derivation of the dipole

formula or in the relation between radiative energy loss and the squared momentum

transfer. Both of these analyses are derived in perturbation theory. A careful analysis of

the approximations needed to derive these results may resolve the discrepancy and lead to

a deeper understanding of radiation in a strongly coupled field theory.

Note added. During the completion of this work a preprint by S. Gubser, hep-

th/0612143, appeared and revealed the properties of the world sheet black hole. We grate-

fully acknowledge illuminating discussions over the past weeks with Professor Gubser, who

pointed out (amongst other things) an algebraic error in our draft which had led to a κT

independent of the quark velocity. Even after correcting this error this manuscript did not

agree with the first version of hep-th/0612143. The differences have since been resolved.
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